New Post!

  • Elektromagnetik

    kalau ada yang tidak dimengerti langsung tanyain langsung aja ok :D
    A.  Latar Belakang
    Listrik dalam era industri merupakan keperluan yang sangat vital. Dengan adanya transformator keperluan listrik pada tegangan yang sesuai  dapat terpenuhi. Dahulu untuk membawa  listrik diperlukan kuda. Kuda akan membawa pembangkit listrik untuk penerangan lapangan ski. Seandainya transformator belum ditemukan, berapa ekor kuda yang diperlukan untuk penerangan sebuah kota. Fenomena pemindahan  listrik akan kamu dibahas dalam induksi elektromagnetik.
    Jika ada pembangkit listrik dekat rumahmu, coba diperhatikan. Pembangkit  listrik biasanya terletak jauh dari permukiman penduduk. Untuk membawa energy listrik, atau lebih dikenal transmisi daya listrik, diperlukan kabel yang sangat panjang. Kabel yang demikian dapat menurunkan tegangan. Karena itu diperlukan alat yang dapat menaikkan kembali tegangan sesuai keperluan. Dan kamu pasti melihat tabung berwarna biru yang dipasang pada tiang listrik. Alat tersebut adalah transformator yang berfungsi untuk menaikkan dan menurunkan  tegangan.
    B.     Rumusan Masalah
    Rumusan masalah yang diangkat dalam penulisan makalah ini adalah sebagai berikut:
    1.      Apa arti Induksi Elekromagetik?
    2.      Bagaimana Penerapan Induksi Elektromagnetik?
    3.      Apa yang dimaksud dengan Transformator?

    A.      Induksi Elektromagnetik
    1.      GGL Induksi
    Kelistrikan dapat menghasilkan kemagnetan. Menurutmu, dapatkah kemagnetan menimbulkan kelistrikan? Kemagnetan dan kelistrikan merupakan dua gejala alam yang prosesnya dapat dibolak-balik. Ketika H.C. Oersted membuktikan bahwa disekitar kawat berarus listrik terdapat medan magnet (artinya listrik menimbulkan  magnet), para ilmuwan mulai berpikir keterkaitan antara kelistrikan dan kemagnetan.
     

    Gambar 21. Percobaan Michael faraday



    Tahun 1821 Michael Faraday membuktikan bahwa perubahan medan magnet dapat menimbulkan arus listrik (artinya magnet menimbulkan istrik) melalui eksperimen yang  sangat  sederhana seperti yang ditunjukkanpada gambar 2.1. Sebuah  magnet  yang digerakkan masuk dan keluar pada kumparan dapat menghasilkan arus  listrik pada kumparan  itu. Galvanometer merupakan  alat  yang dapat digunakan untuk mengetahui ada tidaknya arus listrik yang mengalir. Ketika sebuah magnet yang digerakkan masuk dan keluar pada kumparan, jarum galvanometer menyimpang ke kanan dan ke kiri. Bergeraknya jarum galvanometer menunjukkan bahwa magnet yang digerakkan keluar dan masuk   pada kumparan menimbulkan arus listrik. Arus listrik bisa terjadi jika pada ujung-ujung kumparan terdapat GGL (gaya gerak listrik). GGL yang terjadi di ujung-ujung kumparan dinamakan GGL induksi. Arus listrik hanya timbul pada saat magnet bergerak. Jika magnet diam  di dalam  kumparan,  di ujung kumparan tidak terjadi arus listrik.
            Sehingga ditetapkan hukum Faraday yang berbunyi:
    a.      Jika sebuah penghantar memotong garis-garis gaya dari suatu medan magnetik (fluks) yang konstan, maka pada penghantar tersebut akan timbul tegangan induksi.
    b.     Perubahan fluks medan magnetik didalam suatu rangkaian bahan penghantar, akan menimbulkan tegangan induksi pada rangkaian tersebut.
     


    Persamaan Ggl induksi (Eind) yang memenuhi hukum Faraday adalah sebagai berikut:
    Tanda negatif berati sesuai dengan Hukum Lenz, yaitu “Ggl Induksi selalu membangkitkan arus yang medan magnetiknya berlawanan dengan sumber perubahan fluks magnetik”. Fluks Magnetik adalah kerapatan garis-garis gaya dalam medan magnet, artinya fluks magnetik yang berada pada permukaan yang lebih luas kerapatannya rendah dan kuat medan magnetik (B) lebih lemah, sedangkan pada permukaan yang lebih sempit kerapatan fluks magnet akan kuat dan kuat medan magnetik (B) lebih tinggi. Satuan internasional dari besaran fluks magnetik diukur dalam Weber, disingkat Wb dan didefinisikan dengan, Suatu medan magnet serba sama mempunyai fluks magnetik sebesar 1 weber bila sebatang penghantar memotong garis-garis gaya magnetik selama satu detik akan menimbulkan gaya gerak listrik (ggl) sebesar satu volt.
    1.      Penyebab Terjadinya GGL Induksi
    Ketika  kutub  utara  magnet  batang  digerakkan  masuk  ke dalam kumparan,  jumlah garis gaya-gaya magnet yang  terdapat di dalam kumparan bertambah banyak. Bertambahnya   jumlah garis- garis gaya ini menimbulkan GGL induksi pada ujung-ujung kumparan. GGL induksi yang ditimbulkan menyebabkan arus listrik mengalir menggerakkan jarum galvanometer.  Arah  arus  induksi dapat ditentukan dengan cara memerhatikan  arah  medan  magnet yang ditimbulkannya. Pada saat magnet masuk,  garis  gaya  dalam kumparan bertambah. Akibatnya medan magnet hasil arus induksi bersifat mengurangi garis gaya itu. Dengan demikian, ujung kumparan itu merupakan kutub utara sehingga arah arus induksi seperti yang  ditunjukkan Gambar  2.1.
    Ketika  kutub  utara  magnet  batang  digerakkan  keluar  dari dalam kumparan,  jumlah garis-garis gaya magnet yang  terdapat di dalam kumparan berkurang. Berkurangnya jumlah garis-garis gaya ini juga menimbulkan GGL induksi pada ujung-ujung kumparan. GGL induksi yang ditimbulkan menyebabkan arus listrik mengalir dan menggerakkan jarum galvanometer. Sama halnya ketika magnet batang masuk ke  kumparan. pada  saat  magnet  keluar  garis  gaya dalam kumparan berkurang.  Akibatnya  medan  magnet  hasil  arus induksi bersifat menambah garis gaya itu. Dengan demikian, ujung, kumparan itu merupakan kutub selatan. Ketika kutub utara magnet batang diam di dalam kumparan, jumlah  garis-garis gaya magnet di  dalam  kumparan  tidak  terjadi perubahan (tetap). Karena jumlah garis-garis gaya tetap, maka pada ujung-ujung kumparan tidak terjadi GGL induksi. Akibatnya, tidak terjadi arus listrik dan jarum galvanometer tidak bergerak. Jadi, GGL induksi dapat terjadi pada kedua ujung kumparan jika di dalam kumparan  terjadi perubahan  jumlah garis-garis gaya magnet (fluks magnetik).
    GGL yang timbul akibat adanya perubahan jumlah  garis-garis gaya magnet dalam  kumparan  disebut  GGL induksi. Arus listrik yang ditimbulkan GGL induksi  disebut  arus induksi. Peristiwa timbulnya GGL  induksi dan arus induksi akibat adanya perubahan jumlah garis-garis gaya magnet disebut  induksi elektromagnetik.
    2.      Faktor yang Memengaruhi Besar GGL Induksi
    Sebenarnya besar kecil GGL induksi dapat dilihat pada besar kecilnya penyimpangan sudut jarum galvanometer. Jika sudut penyimpangan jarum galvanometer besar, GGL induksi dan arus induksi yang dihasilkan besar. Terdapat beberapa cara memperbesar GGL induksi. Ada  tiga  faktor yang memengaruhi GGL induksi, yaitu :
    a.    kecepatan  gerakan  magnet  atau  kecepatan  perubahan  jumlah garis-garis gaya magnet (fluks magnetik),
    b.    jumlah lilitan,
    c.    medan magnet
    A.    Penerapan Induksi Elektromagnetik
    Pada induksi elektromagnetik terjadi perubahan bentuk energi gerak menjadi energi listrik. Induksi elektromagnetik digunakan pada pembangkit energi listrik. Pembangkit energi listrik yang menerapkan induksi elektromagnetik adalah generator dan dinamo. Di dalam generator dan dinamo terdapat kumparan dan magnet. Kumparan atau magnet yang  berputar  menyebabkan  terjadinya perubahan jumlah garis-garis gaya magnet dalam kumparan. Perubahan tersebut menyebabkan terjadinya  GGL  induksi  pada kumparan. Energi mekanik yang diberikan  generator  dan  dinamo diubah ke dalam bentuk energy gerak rotasi. Hal  itu menyebabkan GGL induksi dihasilkan secara  terus-menerus dengan  pola  yang berulang secara periodic.
    1.        Generator
    Generator dibedakan menjadi dua, yaitu generator arus searah (DC) dan generator arus bolak-balik (AC). Baik generator AC dan generator DC memutar kumparan di  dalam medan  magnet  tetap. Generator AC sering disebut alternator. Arus listrik yang dihasilkan berupa  arus  bolak-balik.  Ciri  generator  AC  menggunakan  cincin ganda. Generator arus DC, arus yang dihasilkan berupa arus searah. Ciri  generator  DC  menggunakan  cincin  belah  (komutator).  Jadi,generator  AC  dapat  diubah  menjadi  generator  DC  dengan cara mengganti cincin ganda dengan sebuah komutator. Sebuah  generator  AC  kumparan  berputar   di  antara  kutub- kutub  yang  tak  sejenis  dari  dua  magnet  yang  saling  berhadapan. Kedua kutub magnet akan menimbulkan medan  magnet.  Kedua ujung kumparan dihubungkan dengan sikat karbon  yang  terdapat pada setiap cincin. Kumparan merupakan bagian  generator  yang berputar  (bergerak) disebut rotor. Magnet  tetap merupakan bagian generator yang tidak bergerak   disebut   stator.   Bagaimanakah generator bekerja? Ketika kumparan sejajar dengan arah medan magnet (membentuk  sudut  0 derajat), belum terjadi arus listrik dan tidak terjadi GGL induksi (perhatikan  Gambar  2.1. Pada saat kumparan  berputar perlahan-lahan, arus dan GGL beranjak naik sampai  kumparan membentuk sudut 90 derajat. Saat itu posisi kumparan tegak lurus dengan arah medan magnet. Pada kedudukan ini kuat arus dan GGL induksi menunjukkan nilai maksimum. Selanjutnya, putaran kumparan terus berputar, arus dan GGL makin berkurang. Ketika kumparan mem bentuk sudut 180 derajat kedudukan kumparan sejajar dengan arah medan magnet, maka GGL induksi dan arus induksi menjadi nol.
    Putaran kumparan berikutnya arus dan tegangan mulai naik lagi  dengan  arah  yang  berlawanan.  Pada  saat  membentuk  sudut 270 derajat, terjadi lagi kumparan berarus tegak lurus dengan arah medan magnet. Pada kedudukan kuat arus dan GGL induksi menunjukkan nilai maksimum lagi, namun arahnya berbeda. Putaran  kumparan selanjutnya, arus dan tegangan turun  perlahanlahan  hingga  mencapai  nol  dan  kumparan  kembali  ke  posisi  semula  hingga  memb entuk sudut 360 derajat.



    1.        Dinamo
    Dinamo dibedakan menjadi dua yaitu, dinamo arus searah (DC) dan dinamo arus bolak-balik (AC). Prinsip kerja dinamo sama dengan generator yaitu memutar kumparan di dalam medan magnet atau memutar magnet di dalam kumparan. Bagian dinamo yang berputar disebut rotor. Bagian dinamo yang tidak bergerak disebut stator.
    Perbedaan antara dinamo DC dengan dinamo AC terletak pada cincin yang digunakan. Pada dinamo arus searah menggunakan satu cincin yang dibelah menjadi dua yang disebut cincin belah (komutator). Cincin ini memungkinkan arus listrik yang dihasilkan pada rangkaian luar Dinamo berupa arus searah walaupun di dalam dinamo sendiri menghasilkan arus bolak-balik. Adapun, pada dinamo arus bolak-balik menggunakan cincin ganda (dua cincin). Alat pembangkit listrik arus bolak balik yang paling sederhana adalah dinamo sepeda. Tenaga yang digunakan untuk memutar rotor adalah roda sepeda. Jika roda berputar, kumparan atau magnet ikut berputar. Akibatnya, timbul GGL induksi pada ujung-ujung kumparan dan arus listrik mengalir. Makin cepat gerakan roda sepeda, makin cepat magnet atau kumparan berputar. Makin besar pula GGL induksi  dan arus listrik yang dihasilkan. Jika dihubungkan dengan lampu, nyala lampu makin terang. GGL induksi pada dinamo dapat diperbesar dengan cara putaran roda dipercepat, menggunakan magnet yang kuat (besar), jumlah lilitan diperbanyak, dan menggunakan inti besi lunak di dalam kumparan.
    B.     Transformator
    Di rumah mungkin kamu pernah dihadapkan persoalan tegangan listrik, ketika kamu akan menghidupkan radio yang memerlukan tegangan 6 V atau 12 V. Padahal tegangan listrik yang disediakan PLN 220 V. Bahkan generator pembangkit listrik menghasilkan tegangan listrik yang sangat tinggi mencapai hingga puluhan ribu volt. Kenyataannya sampai di rumah tegangan listrik tinggal 220 V. Bagaimanakah cara mengubah tegangan listrik? Alat yang digunakan untuk menaikkan atau menurunkan tegangan AC disebut transformator (trafo). Trafo memiliki dua terminal, yaitu terminal input dan terminal output. Terminal input terdapat pada kumparan primer. Terminal output terdapat pada kumparan sekunder. Tegangan listrik yang akan diubah dihubungkan dengan terminal input. Adapun, hasil pengubahan tegangan diperoleh pada terminal output. Prinsip kerja transformator menerapkan peristiwa induksi elektromagnetik. Jika pada kumparan primer dialiri arus AC, inti besi yang dililiti kumparan akan menjadi magnet (elektromagnet). Karena arus AC, pada elektromagnet selalu terjadi perubahan garis gaya magnet. Perubahan garis gaya tersebut akan bergeser ke kumparan sekunder. Dengan demikian, pada kumparan sekunder juga terjadi perubahan garis gaya magnet. Hal itulah yang menimbulkan GGL induksi pada kumparan sekunder. Adapun, arus induksi yang dihasilkan adalah arus AC yang besarnya sesuai dengan jumlah lilitan sekunder. Bagian utama transformator ada tiga, yaitu inti besi yang berlapis-lapis, kumparan primer, dan kumparan sekunder. Kumparan primer yang dihubungkan dengan PLN sebagai tegangan masukan (input) yang akan dinaikkan atau diturunkan. Kumparan sekunder dihubungkan dengan beban sebagai tegangan keluaran (output).
    1.        Macam-Macam Transformator
    Apabila tegangan terminal output lebih besar daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penaik tegangan. Sebaliknya apabila tegangan terminal output lebih kecil daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penurun tegangan.  Dengan demikian, transformator (trafo) dibedakan menjadi dua, yaitu trafo step up dan trafo step down.
    a.         Trafo  step up adalah transformator yang berfungsi untuk menaikkan tegangan AC. Trafo ini memiliki ciri-ciri:
    -          jumlah lilitan primer lebih sedikit daripada jumlah lilitan sekunder.
    -          tegangan primer lebih kecil daripada tegangan sekunder,
    -          kuat arus primer lebih besar daripada kuat arus sekunder.
    b.        Trafo step down adalah transformator yang berfungsi untuk menurunkan  tegangan AC. Trafo ini memiliki ciri-ciri:
    -       jumlah lilitan primer lebih banyak daripada jumlah lilitan sekunder,
    -       tegangan primer lebih besar daripada tegangan sekunder,
    -       kuat arus primer lebih kecil daripada kuat arus sekunder.
    2.        Transformator Ideal
    Transformer ideal merupakan trafo yang rugi-ruginya hanya berasal dari rugi lilitan input dan lilitan output. Pada transformer ideal, hubungan antara tegangan input dengan tegangan output, arus input dengan arus output, lilitan input (primer) dengan lilitan output (sekunder) memiliki hubungan yang dijelaskan melalui persamaan berikut ini.
    Besar tegangan dan kuat arus pada trafo bergantung banyaknya lilitan. Besar tegangan sebanding dengan jumlah lilitan. Makin banyak jumlah lilitan tegangan yang dihasilkan makin besar. Hal ini berlaku untuk lilitan primer dan sekunder. Hubungan antara jumlah lilitan primer dan sekunder dengan tegangan primer dan tegangan sekunder dirumuskan Trafo dikatakan ideal jika tidak ada energi yang hilang menjadi kalor, yaitu ketika jumlah energi yang masuk pada kumparan primer sama dengan jumlah energi yang keluar pada kumparan sekunder. Hubungan antara tegangan dengan kuat arus  pada kumparan primer dan sekunder dirumuskan Jika kedua ruas dibagi dengan t,
    3.        Efisiensi Transformator
    Di bagian sebelumnya kamu sudah mempelajari transformator atau trafo yang ideal. Namun, pada kenyataannya trafo tidak pernah ideal. Jika trafo digunakan, selalu timbul energi kalor. Dengan demikian, energi listrik yang masuk pada kumparan primer selalu lebih besar daripada energi yang keluar pada kumparan sekunder. Akibatnya, daya primer lebih besar daripada daya sekunder. Berkurangnya daya dan energi listrik pada sebuah trafo ditentukan oleh besarnya efisiensi trafo. Perbandingan antara daya sekunder dengan daya primer atau hasil bagi antara energi sekunder dengan energi primer yang dinyatakan dengan persen disebut efisiensi trafo. Efisiensi trafo dinyatakan dengan η . Besar efisiensi trafo dapat dirumuskan sebagai berikut.
    4.        Penggunaan  Transformator
    Banyak peralatan listrik di rumah yang menggunakan transformator step down. Trafo tersebut berfungsi untuk menurunkan tegangan listrik PLN yang besarnya 220 V menjadi tegangan lebih rendah sesuai dengan kebutuhan. Sebelum masuk rangkaian elektronik pada alat, tegangan 220 V dari PLN dihubungkan dengan trafo step down terlebih dahulu untuk diturunkan. Misalnya kebutuhan peralatan listrik 25 V. Jika alat itu langsung dihubungkan dengan PLN, alat itu akan rusak atau terbakar. Namun, apabila alat itu dipasang trafo step down yang mampu mengubah tegangan 220 V menjadi 25 V, alat itu akan terhindar dari kerusakan. Ada beberapa alat yang menggunakan transformator antara lain catu daya, adaptor, dan transmisi daya listrik jarak jauh.
    a.    Power supply (catu daya)
    Catu daya merupakan alat yang digunakan untuk menghasilkan tegangan AC yang rendah. Catu daya menggunakan trafo step down yang berfungsi untuk menurunkan tegangan 220 V menjadi beberapa tegangan AC yang besarnya antara 2 V sampai 12 V.
    b.    Adaptor (penyearah arus)
    Adaptor terdiri atas trafo step down dan rangkaian penyearah arus listrik yang berupa diode. Adaptor merupakan catu daya yang ditambah dengan si penyearah arus adalah mengubah tegangan AC menjadi tegangan DC.
    c.    Transmisi daya listrik jarak jauh
    Pembangkit listrik biasanya dibangun jauh dari permukiman penduduk. Proses pengiriman daya listrik kepada pelanggan listrik (konsumen) yang jaraknya jauh disebut transmisi daya listrik jarak jauh. Untuk menyalurkan energi listrik ke konsumen yang jauh, tegangan yang dihasilkan generator pembangkit listrik perlu dinaikkan mencapai ratusan ribu volt. Untuk itu, diperlukan trafo step up. Tegangan tinggi ditransmisikan melalui kabel jaringan listrik yang panjang menuju konsumen. Sebelum masuk ke rumah-rumah penduduk tegangan diturunkan menggunakan trafo step down hingga menghasilkan 220 V. Transmisi daya listrik jarak jauh dapat dilakukan dengan menggunakan tegangan besar dan arus yang kecil. Dengan cara itu akan diperoleh beberapa keuntungan, yaitu energi yang hilang dalam perjalanan dapat dikurangi dan kawat penghantar yang diperlukan dapat lebih kecil serta harganya lebih murah.


    A.      Kesimpulan
    Berdasarkan rumusan masalahnya, kesmpulan yang dapat ditarik adalah sebagai berikut:
    a.    Induksi Elekromagnetik adalah Peristiwa  timbulnya GGL  induksi dan arus induksi akibat adanya perubahan  jumlah garis-garis gaya magnet.
    b.   Penerapan Induksi elektronmagnetik terdapat pada dua alat yang hampir sama bagian-bagiannya yaitu pada generator dan dynamo.
    c.    Transformator adalah Alat yang digunakan untuk menaikkan atau menurunkan tegangan AC


    Penerapan Induksi Elektromagnetik – Pada induksi elektromagnetik terjadi perubahan bentuk energy gerak menjadi energi listrik. Induksi elektromagnetik digunakan pada pembangkit energi listrik. Pembangkit energi listrik yang menerapkan induksi elektromagnetik adalah generator dan dinamo. Di dalam generator dan dinamo terdapat kumparan dan magnet.
    Kumparan atau magnet yang berputar menyebabkan terjadinya perubahan jumlah garis-garis gaya magnet dalam kumparan. Perubahan tersebut menyebabkan terjadinya GGL induksi pada kumparan. Energi mekanik yang diberikan generator dan dynamo diubah ke dalam bentuk energi gerak rotasi. Hal itu menyebabkan GGL induksi dihasilkan secara terus-menerus dengan pola yang berulang secara periodik.

    1. Generator

    Generator dibedakan menjadi dua, yaitu generator arus searah (DC) dan generator arus bolak-balik (AC). Baik generator AC dan generator DC memutar kumparan di dalam medan magnet tetap. Generator AC sering disebut alternator. Arus listrik yang dihasilkan berupa arus bolak-balik. Ciri generator AC menggunakan cincin ganda. Generator arus DC, arus yang dihasilkan berupa arus searah. Ciri generator DC menggunakan cincin belah (komutator). Jadi, generator AC dapat diubah menjadi generator DC dengan cara mengganti cincin ganda dengan sebuah komutator.
    Sebuah generator AC kumparan berputar di antara kutubkutub yang tak sejenis dari dua magnet yang saling berhadapan. Kedua kutub magnet akan menimbulkan medan magnet. Kedua ujung kumparan dihubungkan dengan sikat karbon yang terdapat pada setiap cincin. Kumparan merupakan bagian generator yang berputar (bergerak) disebut rotor. Magnet tetap merupakan bagian generator yang tidak bergerak disebut stator. Bagaimanakah generator bekerja?
    Bagan generator AC

    Bagan generator AC
    Ketika kumparan sejajar dengan arah medan magnet (membentuk sudut 00), belum terjadi arus listrik dan tidak terjadi GGL induksi. Pada saat kumparan berputar perlahan-lahan, arus dan GGL beranjak naik sampai kumparan membentuk sudut 900. Saat itu posisi kumparan tegak lurus dengan arah medan magnet. Pada kedudukan ini kuat arus dan GGL induksi menunjukkan nilai maksimum. Selanjutnya, putaran kumparan terus berputar, arus dan GGL makin berkurang. Ketika kumparan membentuk sudut 1800 kedudukan kumparan sejajar dengan arah medan magnet, maka GGL induksi dan arus induksi menjadi nol.
    Putaran kumparan berikutnya arus dan tegangan mulai naik lagi dengan arah yang berlawanan. Pada saat membentuk sudut 270o, terjadi lagi kumparan berarus tegak lurus dengan arah medan magnet. Pada kedudukan kuat arus dan GGL induksi menunjukkan nilai maksimum lagi, namun arahnya berbeda. Putaran kumparan selanjutnya, arus dan tegangan turun perlahan-lahan hingga mencapai nol dan kumparan kembali ke posisi semula hingga membentuk sudut 360o.

    2. Dinamo

    Dinamo dibedakan menjadi dua yaitu, dinamo arus searah (DC) dan dinamo arus bolak-balik (AC). Prinsip kerja dinamo sama dengan generator yaitu memutar kumparan di dalam medan magnet atau memutar magnet di dalam kumparan. Bagian dinamo yang berputar disebut rotor. Bagian dinamo yang tidak bergerak disebut stator.
    a. Bagan dinamo AC, b. Bagan dinamo DC

    a. Bagan dinamo AC, b. Bagan dinamo DC
    Perbedaan antara dinamo DC dengan dinamo AC terletak pada cincin yang digunakan. Pada dinamo arus searah menggunakan satu cincin yang dibelah menjadi dua yang disebut cincin belah (komutator). Cincin ini memungkinkan arus listrik yang dihasilkan pada rangkaian luar dinamo berupa arus searah walaupun di dalam dinamo sendiri menghasilkan arus bolak-balik. Adapun, pada dynamo arus bolak-balik menggunakan cincin ganda (dua cincin).
    Alat pembangkit listrik arus bolak balik yang paling sederhana adalah dinamo sepeda. Tenaga yang digunakan untuk memutar rotor adalah roda sepeda. Jika roda berputar, kumparan atau magnet ikut berputar. Akibatnya, timbul GGL induksi pada ujung-ujung kumparan dan arus listrik mengalir.
    Dinamo sepeda

    Dinamo sepeda
    Makin cepat gerakan roda sepeda, makin cepat magnet atau kumparan berputar. Makin besar pula GGL induksi dan arus listrik yang dihasilkan. Jika dihubungkan dengan lampu, nyala lampu makin terang. GGL induksi pada dinamo dapat diperbesar dengan cara putaran roda dipercepat, menggunakan magnet yang kuat (besar), jumlah lilitan diperbanyak, dan menggunakan inti besi lunak di dalam kumparan.

    Induksi Elektromagnetik

    0
  • Persamaan Garis Lurus; Fungsi, Persamaan, dan Pertidaksamaan Kuadrat

    Persamaan Garis Lurus
    image
    Bentuk umum
    clip_image002
    m disebut gradien / kemiringan
    clip_image004
    Persamaan garis lurus yang melalui titik (x1 , y1) dan (x2, y2) adalah
    clip_image006
    cat.
    Persamaan garis lurus adalah suatu fungsi dengan f(x) = y.

    Fungsi Kuadrat
    image
    Bentuk umum
    clip_image002[4]
    clip_image002[6]
    Persamaan Kuadrat
    clip_image002[8]
    Cara penyelesaiannya :
    • Rumus ABC
    clip_image002[10]
    Diskriminan
    clip_image002[12]
    Jika D>0 maka x1 dan x2 berbeda, x1, x2 bilangan real (Secara geometri, kurva f(x) memotong sumbu x)
    Jika D=0 maka x1 dan x2 sama, x1, x2 bilangan real (Secara geometri, kurva f(x) bersinggungan dengan sumbu x)
    Jika D<0 maka x1 dan x2 bilangan kompleks (Secara geometri, kurva f(x) tidak memotong maupun bersinggungan dengan sumbu x)
    • Bentuk  x2 + bx + c = 0
    Cari bilangan bulat p dan q sedemikian sehingga  p . q = c dan p + q = b, maka
    x2 + bx + c = 0
    (x + p) (x + q) = 0
    x1 = – p dan x2 = –q
    • Bentuk  ax2 + bx + c = 0
    Cari bilangan bulat p dan q sedemikian sehingga  p . q = a . c dan p + q = b, maka
    ax2 + bx + c = 0
    ax2 + px + qx + c = 0    atau    ax2 + qx + px + c = 0
    (ax2 + px) + (qx + c )= 0    atau    (ax2 + qx) + (px + c )= 0
    faktorkan setiap grupnya sedemikian hingga
    (nx + m) (rx + s) = 0
    x1 = – m / n dan x2 = –s / r
    Contoh-contoh
    1. x2 + 3x + 2 = 0
    b = 3 dan c = 2
    p = 1 dan q = 2 karena 1 + 2 = 3 dan 1 . 2 = 2, maka
    x2 + 3x + 2 = 0
    (x + 1) (x + 2) = 0
    x1 = – 1 dan x2 = –2
    Himpunan penyelesaian = { –1 , –2 }
    2.  2x2 + 7x + 3 = 0
    a = 2, b = 5, c = 3
    a . c = 6
    p = 1 dan q = 6 karena 1 . 6 = 6 dan 1 + 6 = 7, maka
    2x2 + 7x + 3 = 0
    2x2 + x + 6x + 3 = 0
    (2x2 + x) + (6x + 3) = 0
    faktorkan :
    (2x2 + x) = x (2x + 1)
    (6x + 3) = 2 (2x + 1) , maka
    (x + 2) (2x + 1) = 0
    x1 = – 2 dan x2 = –1 / 2
    Himpunan penyelesaian = { –2 , –1 / 2 }
    Pertidaksamaan Kuadrat
    Bentuk persamaan
    clip_image002[8]
    = diganti dengan <, >, <, atau >.
    Cara penyelesaian
    Rubah pertidaksaan tersebut menjadi suatu persamaan
    Selesaikan persamaan tersebut
    Uji tanda
    Contoh
    x2 + 3x + 2 > 0
    Pertidaksamaan tersebut dirubah menjadi persamaan:
    x2 + 3x + 2 = 0 kemudian cari x
    dari contoh sebelumnya diperoleh  x1 = – 1 dan x2 = –2
    Uji tanda :
    clip_image001
    ambil sebuah bilangan real yang terletak sebelum – 2, diantara –2 dengan –1, dan setelah –1 :
    misal –3 , –3/2, 0
    masukkan tiga bilangan tersebut ke f(x) = x2 + 3x + 2
    f(-3) = 2  tanda +
    f(-3/2) = –1/4  tanda –
    f(0) = 2 tanda +
    maka
    clip_image001[6]
    karena x2 + 3x + 2 > 0 maka daerah penyelesaiannya adalah yang bertanda + dan –1, –2 tidak termasuk
    clip_image002[17]
    maka himpunan penyelesaiannya adalah { x<-2 atau x>-1 } atau dengan notasi interval
    clip_image002[19]

    Fungsi dan Persamaan Garis Lurus

    0
  • Hukum gerak Newton

    Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
    Hukum Newton pertama dan kedua, dalam bahasa Latin, dari edisi asli journal Principia Mathematica tahun 1687.
    Hukum gerak Newton adalah tiga hukum fisika yang menjadi dasar mekanika klasik. Hukum ini menggambarkan hubungan antara gaya yang bekerja pada suatu benda dan gerak yang disebabkannya. Hukum ini telah dituliskan dengan pembahasaan yang berbeda-beda selama hampir 3 abad,[1] dan dapat dirangkum sebagai berikut:
    1. Hukum Pertama: setiap benda akan memiliki kecepatan yang konstan kecuali ada gaya yang resultannya tidak nol bekerja pada benda tersebut.[2][3][4] Berarti jika resultan gaya nol, maka pusat massa dari suatu benda tetap diam, atau bergerak dengan kecepatan konstan (tidak mengalami percepatan). Hal ini berlaku jika dilihat dari kerangka acuan inersial.
    2. Hukum Kedua: sebuah benda dengan massa M mengalami gaya resultan sebesar F akan mengalami percepatan a yang arahnya sama dengan arah gaya, dan besarnya berbanding lurus terhadap F dan berbanding terbalik terhadap M. atau F=Ma. Bisa juga diartikan resultan gaya yang bekerja pada suatu benda sama dengan turunan dari momentum linear benda tersebut terhadap waktu.
    3. Hukum Ketiga: gaya aksi dan reaksi dari dua benda memiliki besar yang sama, dengan arah terbalik, dan segaris. Artinya jika ada benda A yang memberi gaya sebesar F pada benda B, maka benda B akan memberi gaya sebesar –F kepada benda A. F dan –F memiliki besar yang sama namun arahnya berbeda. Hukum ini juga terkenal sebagai hukum aksi-reaksi, dengan F disebut sebagai aksi dan –F adalah reaksinya.
    Ketiga hukum gerak ini pertama dirangkum oleh Isaac Newton dalam karyanya Philosophiæ Naturalis Principia Mathematica, pertama kali diterbitkan pada 5 Juli 1687.[5] Newton menggunakan karyanya untuk menjelaskan dan meniliti gerak dari bermacam-macam benda fisik maupun sistem.[6] Contohnya dalam jilid tiga dari naskah tersebut, Newton menunjukkan bahwa dengan menggabungkan antara hukum gerak dengan hukum gravitasi umum, ia dapat menjelaskan hukum pergerakan planet milik Kepler.

    Tinjauan

    Hukum Newton diterapkan pada benda yang dianggap sebagai partikel,[7] dalam evaluasi pergerakan misalnya, panjang benda tidak dihiraukan, karena obyek yang dihitung dapat dianggap kecil, relatif terhadap jarak yang ditempuh. Perubahan bentuk (deformasi) dan rotasi dari suatu obyek juga tidak diperhitungkan dalam analisisnya. Maka sebuah planet dapat dianggap sebagai suatu titik atau partikel untuk dianalisa gerakan orbitnya mengelilingi sebuah bintang.
    Dalam bentuk aslinya, hukum gerak Newton tidaklah cukup untuk menghitung gerakan dari obyek yang bisa berubah bentuk (benda tidak padat). Leonard Euler pada tahun 1750 memperkenalkan generalisasi hukum gerak Newton untuk benda padat yang disebut hukum gerak Euler, yang dalam perkembangannya juga dapat digunakan untuk benda tidak padat. Jika setiap benda dapat direpresentasikan sebagai sekumpulan partikel-partikel yang berbeda, dan tiap-tiap partikel mengikuti hukum gerak Newton, maka hukum-hukum Euler dapat diturunkan dari hukum-hukum Newton. Hukum Euler dapat dianggap sebagai aksioma dalam menjelaskan gerakan dari benda yang memiliki dimensi.[8]
    Ketika kecepatan mendekati kecepatan cahaya, efek dari relativitas khusus harus diperhitungkan. [9]

    Hukum pertama Newton

    Walter Lewin menjelaskan hukum pertama Newton.(MIT Course 8.01)[10]
    Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare.
    Hukum I: Setiap benda akan mempertahankan keadaan diam atau bergerak lurus beraturan, kecuali ada gaya yang bekerja untuk mengubahnya.[11]
    Hukum ini menyatakan bahwa jika resultan gaya (jumlah vektor dari semua gaya yang bekerja pada benda) bernilai nol, maka kecepatan benda tersebut konstan. Dirumuskan secara matematis menjadi:
    
\sum \mathbf{F} = 0 \Rightarrow \frac{d \mathbf{v} }{dt} = 0.
    Artinya :
    • Sebuah benda yang sedang diam akan tetap diam kecuali ada resultan gaya yang tidak nol bekerja padanya.
    • Sebuah benda yang sedang bergerak, tidak akan berubah kecepatannya kecuali ada resultan gaya yang tidak nol bekerja padanya.
    Hukum pertama newton adalah penjelasan kembali dari hukum inersia yang sudah pernah dideskripsikan oleh Galileo. Dalam bukunya Newton memberikan penghargaan pada Galileo untuk hukum ini. Aristoteles berpendapat bahwa setiap benda memilik tempat asal di alam semesta: benda berat seperti batu akan berada di atas tanah dan benda ringan seperti asap berada di langit. Bintang-bintang akan tetap berada di surga. Ia mengira bahwa sebuah benda sedang berada pada kondisi alamiahnya jika tidak bergerak, dan untuk satu benda bergerak pada garis lurus dengan kecepatan konstan diperlukan sesuatu dari luar benda tersebut yang terus mendorongnya, kalau tidak benda tersebut akan berhenti bergerak. Tetapi Galileo menyadari bahwa gaya diperlukan untuk mengubah kecepatan benda tersebut (percepatan), tapi untuk mempertahankan kecepatan tidak diperlukan gaya. Sama dengan hukum pertama Newton : Tanpa gaya berarti tidak ada percepatan, maka benda berada pada kecepatan konstan.

    Hukum kedua Newton

    Walter Lewin menjelaskan hukum dua Newton dengan menggunakan gravitasi sebagai contohnya.(MIT OCW)[12]
    Hukum kedua menyatakan bahwa total gaya pada sebuah partikel sama dengan banyaknya perubahan momentum linier p terhadap waktu :
    \mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m\mathbf v)}{\mathrm{d}t},
    Karena hukumnya hanya berlaku untuk sistem dengan massa konstan,[13][14][15] variabel massa (sebuah konstan) dapat dikeluarkan dari operator diferensial dengan menggunakan aturan diferensiasi. Maka,
    \mathbf{F} = m\,\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = m\mathbf{a},
    Dengan F adalah total gaya yang bekerja, m adalah massa benda, dan a adalah percepatan benda. Maka total gaya yang bekerja pada suatu benda menghasilkan percepatan yang berbanding lurus.
    Massa yang bertambah atau berkurang dari suatu sistem akan mengakibatkan perubahan dalam momentum. Perubahan momentum ini bukanlah akibat dari gaya. Untuk menghitung sistem dengan massa yang bisa berubah-ubah, diperlukan persamaan yang berbeda.
    Sesuai dengan hukum pertama, turunan momentum terhadap waktu tidak nol ketika terjadi perubahan arah, walaupun tidak terjadi perubahan besaran. Contohnya adalah gerak melingkar beraturan. Hubungan ini juga secara tidak langsung menyatakan kekekalan momentum: Ketika resultan gaya yang bekerja pada benda nol, momentum benda tersebut konstan. Setiap perubahan gaya berbanding lurus dengan perubahan momentum tiap satuan waktu.
    Hukum kedua ini perlu perubahan jika relativitas khusus diperhitungkan, karena dalam kecepatan sangat tinggi hasil kali massa dengan kecepatan tidak mendekati momentum sebenarnya.

    Impuls

    Impuls J muncul ketika sebuah gaya F bekerja pada suatu interval waktu Δt, dan dirumuskan sebagai[16][17]
     \mathbf{J} = \int_{\Delta t} \mathbf F \,\mathrm{d}t .
    Impuls adalah suatu konsep yang digunakan untuk menganalisis tumbukan.[18]

    Sistem dengan massa berubah

    Sistem dengan massa berubah, seperti roket yang bahan bakarnya digunakan dan mengeluarkan gas sisa, tidak termasduk dalam sistem tertutup dan tidak dapat dihitung dengan hanya mengubah massa menjadi sebuah fungsi dari waktu di hukum kedua.[14] Alasannya, seperti yang tertulis dalam An Introduction to Mechanics karya Kleppner dan Kolenkow, adalah bahwa hukum kedua Newton berlaku terhadap partikel-partikel secara mendasar.[15] Pada mekanika klasik, partikel memiliki massa yang konstant. Dalam kasus partikel-partikel dalam suatu sistem yang terdefinisikan dengan jelas, hukum Newton dapat digunakan dengan menjumlahkan semua partikel dalam sistem:
    \mathbf{F}_{\mathrm{total}} = M\mathbf{a}_\mathrm{pm}
    dengan Ftotal adalah total gaya yang bekerja pada sistem, M adalah total massa dari sistem, dan apm adalah percepatan dari pusat massa sistem.
    Sistem dengan massa yang berubah-ubah seperti roket atau ember yang berlubang biasanya tidak dapat dihitung seperti sistem partikel, maka hukum kedua Newton tidak dapat digunakan langsung. Persamaan baru digunakan untuk menyelesaikan soal seperti itu dengan cara menata ulang hukum kedua dan menghitung momentum yang dibawa oleh massa yang masuk atau keluar dari sistem:[13]
    \mathbf F + \mathbf{u} \frac{\mathrm{d} m}{\mathrm{d}t} = m {\mathrm{d} \mathbf v \over \mathrm{d}t}
    dengan u adalah kecepatan dari massa yang masuk atau keluar relatif terhadap pusat massa dari obyek utama. Dalam beberapa konvensi, besar (u dm/dt) di sebelah kiri persamaan, yang juga disebut dorongan, didefinisikan sebagai gaya (gaya yang dikeluarkan oleh suatu benda sesuai dengan berubahnya massa, seperti dorongan roket) dan dimasukan dalam besarnya F. Maka dengan mengubah definisi percepatan, persamaan tadi menjadi
    \mathbf F = m \mathbf a.

    Sejarah

    Hukum kedua Newton dalam bahasa aslinya (latin) berbunyi:
    Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur.
    Diterjmahkan dengan cukup tepat oleh Motte pada tahun 1729 menjadi:
    Law II: The alteration of motion is ever proportional to the motive force impress'd; and is made in the direction of the right line in which that force is impress'd.
    Yang dalam Bahasa Indonesia berarti:
    Hukum Kedua: Perubahan dari gerak selalu berbanding lurus terhadap gaya yang dihasilkan / bekerja, dan memiliki arah yang sama dengan garis normal dari titik singgung gaya dan benda.

    Hukum ketiga Newton

    Hukum Ketiga Newton. Para pemain sepatu luncur es memberikan gaya pada satu sama-lain dengan besar yang sama tapi berlawanan arah.
    Penjelasan hukum ketiga Newton.[19]
    Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi.
    Hukum ketiga : Untuk setiap aksi selalu ada reaksi yang sama besar dan berlawanan arah: atau gaya dari dua benda pada satu sama lain selalu sama besar dan berlawanan arah.
    Benda apapun yang menekan atau menarik benda lain mengalami tekanan atau tarikan yang sama dari benda yang ditekan atau ditarik. Kalau anda menekan sebuah batu dengan jari anda, jari anda juga ditekan oleh batu. Jika seekor kuda menarik sebuah batu dengan menggunakan tali, maka kuda tersebut juga "tertarik" ke arah batu: untuk tali yang digunakan, juga akan menarik sang kuda ke arah batu sebesar ia menarik sang batu ke arah kuda.
    Hukum ketiga ini menjelaskan bahwa semua gaya adalah interaksi antara benda-benda yang berbeda,[20] maka tidak ada gaya yang bekerja hanya pada satu benda. Jika benda A mengerjakan gaya pada benda B, benda B secara bersamaan akan mengerjakan gaya dengan besar yang sama pada benda A dan kedua gaya segaris. Seperti yang ditunjukan di diagram, para peluncur es (Ice skater) memberikan gaya satu sama lain dengan besar yang sama, tapi arah yang berlawanan. Walaupun gaya yang diberikan sama, percepatan yang terjadi tidak sama. Peluncur yang massanya lebih kecil akan mendapat percepatan yang lebih besar karena hukum kedua Newton. Dua gaya yang bekerja pada hukum ketiga ini adalah gaya yang bertipe sama. Misalnya antara roda dengan jalan sama-sama memberikan gaya gesek.
    Secara sederhananya, sebuah gaya selalu bekerja pada sepasang benda, dan tidak pernah hanya pada sebuah benda. Jadi untuk setiap gaya selalu memiliki dua ujung. Setiap ujung gaya ini sama kecuali arahnya yang berlawanan. Atau sebuah ujung gaya adalah cerminan dari ujung lainnya.
    Secara matematis, hukum ketiga ini berupa persamaan vektor satu dimensi, yang bisa dituliskan sebagai berikut. Asumsikan benda A dan benda B memberikan gaya terhadap satu sama lain.
    
\sum \mathbf{F}_{a,b}  = - \sum \mathbf{F}_{b,a}
    Dengan
    Fa,b adalah gaya-gaya yang bekerja pada A oleh B, dan
    Fb,a adalah gaya-gaya yang bekerja pada B oleh A.
    Newton menggunakan hukum ketiga untuk menurunkan hukum kekekalan momentum,[21] namun dengan pengamatan yang lebih dalam, kekekalan momentum adalah ide yang lebih mendasar (diturunkan melalui teorema Noether dari relativitas Galileo dibandingkan hukum ketiga, dan tetap berlaku pada kasus yang membuat hukum ketiga newton seakan-akan tidak berlaku. Misalnya ketika medan gaya memiliki momentum, dan dalam mekanika kuantum.

    Pentingnya hukum Newton dan jangkauan validitasnya

    Hukum-hukum Newton sudah diverifikasi dengan eksperimen dan pengamatan selama lebih dari 200 tahun, dan hukum-hukum ini adalah pendekatan yang sangat baik untuk perhitungan dalam skala dan kecepatan yang dialami oleh manusia sehari-hari. Hukum gerak Newton dan hukum gravitasi umum dan kalkulus, (untuk pertama kalinya) dapat memfasilitasi penjelasan kuantitatif tentang berbagai fenomena-fenomena fisis.
    Ketiga hukum ini juga merupakan pendekatan yang baik untuk benda-benda makroskopis dalam kondisi sehari-hari. Namun hukum newton (digabungkan dengan hukum gravitasi umum dan elektrodinamika klasik) tidak tepat untuk digunakan dalam kondisi tertentu, terutama dalam skala yang amat kecil, kecepatan yang sangat tinggi (dalam relativitas khususs, faktor Lorentz, massa diam, dan kecepatan harus diperhitungkan dalam perumusan momentum) atau medan gravitasi yang sangat kuat. Maka hukum-hukum ini tidak dapat digunakan untuk menjelaskan fenomena-fenomena seperti konduksi listrik pada sebuah semikonduktor, sifat-sifat optik dari sebuah bahan, kesalahan pada GPS sistem yang tidak diperbaiki secara relativistik, dan superkonduktivitas. Penjelasan dari fenomena-fenomena ini membutuhkan teori fisika yang lebih kompleks, termasuk relativitas umum dan teori medan kuantum.
    Dalam mekanika kuantum konsep seperti gaya, momentum, dan posisi didefinsikan oleh operator-operator linier yang beroperasi dalam kondisi kuantum, pada kecepatan yang jauh lebih rendah dari kecepatan cahaya, hukum-hukum Newton sama tepatnya dengan operator-operator ini bekerja pada benda-benda klasik. Pada kecepatan yang mendekati kecepatan cahaya, hukum kedua tetap berlaku seperti bentuk aslinya F = dpdt, yang menjelaskan bahwa gaya adalah turunan dari momentum suatu benda terhadap waktu, namun beberapa versi terbaru dari hukum kedua tidak berlaku pada kecepatan relativistik.

    Hubungan dengan hukum kekekalan

    Di fisika modern, hukum kekekalan dari momentum, energi, dan momentum sudut berlaku lebih umum daripada hukum-hukum Newton, karena mereka berlaku pada cahaya maupun materi, dan juga pada fisika klasik maupun fisika non-klasik.
    Secara sederhana, "Momen, energi, dan momentum angular tidak dapat diciptakan atau dihilangkan."
    Karena gaya adalah turunan dari momen, dalam teori-teori dasar (seperti mekanika kuantum, elektrodinamika kuantum, relativitas umum, dsb.), konsep gaya tidak penting dan berada dibawah kekekalan momentum.
    Model standar dapat menjelaskan secara terperinci bagaimana tiga gaya-gaya fundamental yang dikenal sebagai gaya-gaya gauge, berasal dari pertukaran partikel virtual. Gaya-gaya lain seperti gravitasi dan tekanan degenerasi fermionic juga muncul dari kekekalan momentum. Kekekalan dari 4-momentum dalam gerak inersia melalui ruang-waktu terkurva menghasilkan yang kita sebut sebagai gaya gravitasi dalam teori relativitas umum.
    Kekekalan energi baru ditemukan setelah hampir dua abad setelah kehidupan Newton, adanya jeda yang cukup panjang ini disebabkan oleh adanya kesulitan dalam memahami peran dari energi mikroskopik dan tak terlihat seperti panas dan cahaya infra-merah.

    Hukum Gerak Newton

    0
  • My Blog List

    Total Tayangan Halaman

    Animated Spinning Kunai - Naruto

    Pages

    Translate

    - Copyright © 2013 はじめまして!! - K-ON!! - Powered by Blogger - Designed by Johanes Djogan -